Closing Thur: $\quad 12.6,13.1$
 Closing next Tues: 13.2, 13.3
 Closing next Thur: 13.4
 Exam 1 is next Thurs (April 19)
 covers 12.1-12.5, 13.1-13.4
 13.1: Intro to 3D Vector Curves

To visualize 3D-curves, we start by Step 1: Find surface/path of motion. Step 2: Plot points.

2D Examples
Eliminate the parameters

1. $x=t, y=2-t^{2}$
2. $x=3 \cos (4 t), y=4 \sin (4 t)$

3D Example

$x=t, y=\cos (2 t), z=\sin (2 t)$

Example: All pts given by the equations

$$
x=t, y=\cos (2 t), z=\sin (2 t)
$$

are on the cylinder: $y^{2}+z^{2}=1$.

Another 3D Examples

$$
x=t \cos (t), y=t \sin (t), z=t
$$

Example: All pts given by the equations

$$
x=t \cos (t), y=t \sin (t), z=t
$$

are on the cone $z^{2}=x^{2}+y^{2}$.

Now plot points!

Intersection issues

For all intersection questions, combine the conditions
(a) Intersecting a curve and surface.

Combine conditions
Example:
Find all intersections of

$$
x=t, y=\cos (\pi t), z=\sin (\pi t)
$$

with the surface

$$
x^{2}-y^{2}-z^{2}=3
$$

(b) Intersecting two curves.

Use two different parameters!!!
Combine conditions.
We say the objects collide if the
intersection happens at the same parameter value (i.e. same time).

Example:
Two particles are moving according to

$$
\begin{aligned}
& \boldsymbol{r}_{1}(t)=\langle t, 5 t, 9\rangle, \text { and } \\
& \boldsymbol{r}_{2}(t)=\left\langle t-2,5, t^{2}\right\rangle .
\end{aligned}
$$

Do their paths intersect?
Do they collide?
(c) Intersecting two surfaces. Answer will be a 3D curve. To parameterize the curve:

Let one variable be t. Solve for others in terms of t. OR
For circle/ellipse try

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Leftrightarrow \begin{aligned}
& x=\mathrm{a} \cos (t) \\
& y=\mathrm{b} \sin (t)
\end{aligned}
$$

Examples

1. Find any parametric equations that describe the curve of intersection of

$$
z=2 x+y^{2} \text { and } z=2 y
$$

2. Find any parametric equations that 3. Find any parametric equations that describe the curve of intersection of $x^{2}+y^{2}=1$ and $z=5-x$ describe the curves of intersection of $x^{2}+y^{2}+z^{2}=1$ and $z^{2}=x^{2}+y^{2}$

